3.6.96 \(\int x^4 (d+e x^2) (a+b \arcsin (c x)) \, dx\) [596]

3.6.96.1 Optimal result
3.6.96.2 Mathematica [A] (verified)
3.6.96.3 Rubi [A] (verified)
3.6.96.4 Maple [A] (verified)
3.6.96.5 Fricas [A] (verification not implemented)
3.6.96.6 Sympy [A] (verification not implemented)
3.6.96.7 Maxima [A] (verification not implemented)
3.6.96.8 Giac [B] (verification not implemented)
3.6.96.9 Mupad [F(-1)]

3.6.96.1 Optimal result

Integrand size = 19, antiderivative size = 152 \[ \int x^4 \left (d+e x^2\right ) (a+b \arcsin (c x)) \, dx=\frac {b \left (7 c^2 d+5 e\right ) \sqrt {1-c^2 x^2}}{35 c^7}-\frac {b \left (14 c^2 d+15 e\right ) \left (1-c^2 x^2\right )^{3/2}}{105 c^7}+\frac {b \left (7 c^2 d+15 e\right ) \left (1-c^2 x^2\right )^{5/2}}{175 c^7}-\frac {b e \left (1-c^2 x^2\right )^{7/2}}{49 c^7}+\frac {1}{5} d x^5 (a+b \arcsin (c x))+\frac {1}{7} e x^7 (a+b \arcsin (c x)) \]

output
-1/105*b*(14*c^2*d+15*e)*(-c^2*x^2+1)^(3/2)/c^7+1/175*b*(7*c^2*d+15*e)*(-c 
^2*x^2+1)^(5/2)/c^7-1/49*b*e*(-c^2*x^2+1)^(7/2)/c^7+1/5*d*x^5*(a+b*arcsin( 
c*x))+1/7*e*x^7*(a+b*arcsin(c*x))+1/35*b*(7*c^2*d+5*e)*(-c^2*x^2+1)^(1/2)/ 
c^7
 
3.6.96.2 Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.76 \[ \int x^4 \left (d+e x^2\right ) (a+b \arcsin (c x)) \, dx=\frac {105 a x^5 \left (7 d+5 e x^2\right )+\frac {b \sqrt {1-c^2 x^2} \left (240 e+8 c^2 \left (49 d+15 e x^2\right )+2 c^4 \left (98 d x^2+45 e x^4\right )+3 c^6 \left (49 d x^4+25 e x^6\right )\right )}{c^7}+105 b x^5 \left (7 d+5 e x^2\right ) \arcsin (c x)}{3675} \]

input
Integrate[x^4*(d + e*x^2)*(a + b*ArcSin[c*x]),x]
 
output
(105*a*x^5*(7*d + 5*e*x^2) + (b*Sqrt[1 - c^2*x^2]*(240*e + 8*c^2*(49*d + 1 
5*e*x^2) + 2*c^4*(98*d*x^2 + 45*e*x^4) + 3*c^6*(49*d*x^4 + 25*e*x^6)))/c^7 
 + 105*b*x^5*(7*d + 5*e*x^2)*ArcSin[c*x])/3675
 
3.6.96.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {5230, 27, 354, 86, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^4 \left (d+e x^2\right ) (a+b \arcsin (c x)) \, dx\)

\(\Big \downarrow \) 5230

\(\displaystyle -b c \int \frac {x^5 \left (5 e x^2+7 d\right )}{35 \sqrt {1-c^2 x^2}}dx+\frac {1}{5} d x^5 (a+b \arcsin (c x))+\frac {1}{7} e x^7 (a+b \arcsin (c x))\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {1}{35} b c \int \frac {x^5 \left (5 e x^2+7 d\right )}{\sqrt {1-c^2 x^2}}dx+\frac {1}{5} d x^5 (a+b \arcsin (c x))+\frac {1}{7} e x^7 (a+b \arcsin (c x))\)

\(\Big \downarrow \) 354

\(\displaystyle -\frac {1}{70} b c \int \frac {x^4 \left (5 e x^2+7 d\right )}{\sqrt {1-c^2 x^2}}dx^2+\frac {1}{5} d x^5 (a+b \arcsin (c x))+\frac {1}{7} e x^7 (a+b \arcsin (c x))\)

\(\Big \downarrow \) 86

\(\displaystyle -\frac {1}{70} b c \int \left (-\frac {5 e \left (1-c^2 x^2\right )^{5/2}}{c^6}+\frac {\left (7 d c^2+15 e\right ) \left (1-c^2 x^2\right )^{3/2}}{c^6}+\frac {\left (-14 d c^2-15 e\right ) \sqrt {1-c^2 x^2}}{c^6}+\frac {7 d c^2+5 e}{c^6 \sqrt {1-c^2 x^2}}\right )dx^2+\frac {1}{5} d x^5 (a+b \arcsin (c x))+\frac {1}{7} e x^7 (a+b \arcsin (c x))\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{5} d x^5 (a+b \arcsin (c x))+\frac {1}{7} e x^7 (a+b \arcsin (c x))-\frac {1}{70} b c \left (-\frac {2 \left (1-c^2 x^2\right )^{5/2} \left (7 c^2 d+15 e\right )}{5 c^8}+\frac {2 \left (1-c^2 x^2\right )^{3/2} \left (14 c^2 d+15 e\right )}{3 c^8}-\frac {2 \sqrt {1-c^2 x^2} \left (7 c^2 d+5 e\right )}{c^8}+\frac {10 e \left (1-c^2 x^2\right )^{7/2}}{7 c^8}\right )\)

input
Int[x^4*(d + e*x^2)*(a + b*ArcSin[c*x]),x]
 
output
-1/70*(b*c*((-2*(7*c^2*d + 5*e)*Sqrt[1 - c^2*x^2])/c^8 + (2*(14*c^2*d + 15 
*e)*(1 - c^2*x^2)^(3/2))/(3*c^8) - (2*(7*c^2*d + 15*e)*(1 - c^2*x^2)^(5/2) 
)/(5*c^8) + (10*e*(1 - c^2*x^2)^(7/2))/(7*c^8))) + (d*x^5*(a + b*ArcSin[c* 
x]))/5 + (e*x^7*(a + b*ArcSin[c*x]))/7
 

3.6.96.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 86
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_ 
.), x_] :> Int[ExpandIntegrand[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; 
 FreeQ[{a, b, c, d, e, f, n}, x] && ((ILtQ[n, 0] && ILtQ[p, 0]) || EqQ[p, 1 
] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p 
+ 1, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5230
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_ 
)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp 
[(a + b*ArcSin[c*x])   u, x] - Simp[b*c   Int[SimplifyIntegrand[u/Sqrt[1 - 
c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[c^2*d + e, 
0] && IntegerQ[p] && (GtQ[p, 0] || (IGtQ[(m - 1)/2, 0] && LeQ[m + p, 0]))
 
3.6.96.4 Maple [A] (verified)

Time = 0.26 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.28

method result size
parts \(a \left (\frac {1}{7} e \,x^{7}+\frac {1}{5} d \,x^{5}\right )+\frac {b \left (\frac {c^{5} \arcsin \left (c x \right ) e \,x^{7}}{7}+\frac {\arcsin \left (c x \right ) c^{5} x^{5} d}{5}-\frac {5 e \left (-\frac {c^{6} x^{6} \sqrt {-c^{2} x^{2}+1}}{7}-\frac {6 c^{4} x^{4} \sqrt {-c^{2} x^{2}+1}}{35}-\frac {8 c^{2} x^{2} \sqrt {-c^{2} x^{2}+1}}{35}-\frac {16 \sqrt {-c^{2} x^{2}+1}}{35}\right )+7 d \,c^{2} \left (-\frac {c^{4} x^{4} \sqrt {-c^{2} x^{2}+1}}{5}-\frac {4 c^{2} x^{2} \sqrt {-c^{2} x^{2}+1}}{15}-\frac {8 \sqrt {-c^{2} x^{2}+1}}{15}\right )}{35 c^{2}}\right )}{c^{5}}\) \(194\)
derivativedivides \(\frac {\frac {a \left (\frac {1}{5} d \,c^{7} x^{5}+\frac {1}{7} e \,c^{7} x^{7}\right )}{c^{2}}+\frac {b \left (\frac {\arcsin \left (c x \right ) d \,c^{7} x^{5}}{5}+\frac {\arcsin \left (c x \right ) e \,c^{7} x^{7}}{7}-\frac {e \left (-\frac {c^{6} x^{6} \sqrt {-c^{2} x^{2}+1}}{7}-\frac {6 c^{4} x^{4} \sqrt {-c^{2} x^{2}+1}}{35}-\frac {8 c^{2} x^{2} \sqrt {-c^{2} x^{2}+1}}{35}-\frac {16 \sqrt {-c^{2} x^{2}+1}}{35}\right )}{7}-\frac {d \,c^{2} \left (-\frac {c^{4} x^{4} \sqrt {-c^{2} x^{2}+1}}{5}-\frac {4 c^{2} x^{2} \sqrt {-c^{2} x^{2}+1}}{15}-\frac {8 \sqrt {-c^{2} x^{2}+1}}{15}\right )}{5}\right )}{c^{2}}}{c^{5}}\) \(201\)
default \(\frac {\frac {a \left (\frac {1}{5} d \,c^{7} x^{5}+\frac {1}{7} e \,c^{7} x^{7}\right )}{c^{2}}+\frac {b \left (\frac {\arcsin \left (c x \right ) d \,c^{7} x^{5}}{5}+\frac {\arcsin \left (c x \right ) e \,c^{7} x^{7}}{7}-\frac {e \left (-\frac {c^{6} x^{6} \sqrt {-c^{2} x^{2}+1}}{7}-\frac {6 c^{4} x^{4} \sqrt {-c^{2} x^{2}+1}}{35}-\frac {8 c^{2} x^{2} \sqrt {-c^{2} x^{2}+1}}{35}-\frac {16 \sqrt {-c^{2} x^{2}+1}}{35}\right )}{7}-\frac {d \,c^{2} \left (-\frac {c^{4} x^{4} \sqrt {-c^{2} x^{2}+1}}{5}-\frac {4 c^{2} x^{2} \sqrt {-c^{2} x^{2}+1}}{15}-\frac {8 \sqrt {-c^{2} x^{2}+1}}{15}\right )}{5}\right )}{c^{2}}}{c^{5}}\) \(201\)

input
int(x^4*(e*x^2+d)*(a+b*arcsin(c*x)),x,method=_RETURNVERBOSE)
 
output
a*(1/7*e*x^7+1/5*d*x^5)+b/c^5*(1/7*c^5*arcsin(c*x)*e*x^7+1/5*arcsin(c*x)*c 
^5*x^5*d-1/35/c^2*(5*e*(-1/7*c^6*x^6*(-c^2*x^2+1)^(1/2)-6/35*c^4*x^4*(-c^2 
*x^2+1)^(1/2)-8/35*c^2*x^2*(-c^2*x^2+1)^(1/2)-16/35*(-c^2*x^2+1)^(1/2))+7* 
d*c^2*(-1/5*c^4*x^4*(-c^2*x^2+1)^(1/2)-4/15*c^2*x^2*(-c^2*x^2+1)^(1/2)-8/1 
5*(-c^2*x^2+1)^(1/2))))
 
3.6.96.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.84 \[ \int x^4 \left (d+e x^2\right ) (a+b \arcsin (c x)) \, dx=\frac {525 \, a c^{7} e x^{7} + 735 \, a c^{7} d x^{5} + 105 \, {\left (5 \, b c^{7} e x^{7} + 7 \, b c^{7} d x^{5}\right )} \arcsin \left (c x\right ) + {\left (75 \, b c^{6} e x^{6} + 3 \, {\left (49 \, b c^{6} d + 30 \, b c^{4} e\right )} x^{4} + 392 \, b c^{2} d + 4 \, {\left (49 \, b c^{4} d + 30 \, b c^{2} e\right )} x^{2} + 240 \, b e\right )} \sqrt {-c^{2} x^{2} + 1}}{3675 \, c^{7}} \]

input
integrate(x^4*(e*x^2+d)*(a+b*arcsin(c*x)),x, algorithm="fricas")
 
output
1/3675*(525*a*c^7*e*x^7 + 735*a*c^7*d*x^5 + 105*(5*b*c^7*e*x^7 + 7*b*c^7*d 
*x^5)*arcsin(c*x) + (75*b*c^6*e*x^6 + 3*(49*b*c^6*d + 30*b*c^4*e)*x^4 + 39 
2*b*c^2*d + 4*(49*b*c^4*d + 30*b*c^2*e)*x^2 + 240*b*e)*sqrt(-c^2*x^2 + 1)) 
/c^7
 
3.6.96.6 Sympy [A] (verification not implemented)

Time = 0.71 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.47 \[ \int x^4 \left (d+e x^2\right ) (a+b \arcsin (c x)) \, dx=\begin {cases} \frac {a d x^{5}}{5} + \frac {a e x^{7}}{7} + \frac {b d x^{5} \operatorname {asin}{\left (c x \right )}}{5} + \frac {b e x^{7} \operatorname {asin}{\left (c x \right )}}{7} + \frac {b d x^{4} \sqrt {- c^{2} x^{2} + 1}}{25 c} + \frac {b e x^{6} \sqrt {- c^{2} x^{2} + 1}}{49 c} + \frac {4 b d x^{2} \sqrt {- c^{2} x^{2} + 1}}{75 c^{3}} + \frac {6 b e x^{4} \sqrt {- c^{2} x^{2} + 1}}{245 c^{3}} + \frac {8 b d \sqrt {- c^{2} x^{2} + 1}}{75 c^{5}} + \frac {8 b e x^{2} \sqrt {- c^{2} x^{2} + 1}}{245 c^{5}} + \frac {16 b e \sqrt {- c^{2} x^{2} + 1}}{245 c^{7}} & \text {for}\: c \neq 0 \\a \left (\frac {d x^{5}}{5} + \frac {e x^{7}}{7}\right ) & \text {otherwise} \end {cases} \]

input
integrate(x**4*(e*x**2+d)*(a+b*asin(c*x)),x)
 
output
Piecewise((a*d*x**5/5 + a*e*x**7/7 + b*d*x**5*asin(c*x)/5 + b*e*x**7*asin( 
c*x)/7 + b*d*x**4*sqrt(-c**2*x**2 + 1)/(25*c) + b*e*x**6*sqrt(-c**2*x**2 + 
 1)/(49*c) + 4*b*d*x**2*sqrt(-c**2*x**2 + 1)/(75*c**3) + 6*b*e*x**4*sqrt(- 
c**2*x**2 + 1)/(245*c**3) + 8*b*d*sqrt(-c**2*x**2 + 1)/(75*c**5) + 8*b*e*x 
**2*sqrt(-c**2*x**2 + 1)/(245*c**5) + 16*b*e*sqrt(-c**2*x**2 + 1)/(245*c** 
7), Ne(c, 0)), (a*(d*x**5/5 + e*x**7/7), True))
 
3.6.96.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.20 \[ \int x^4 \left (d+e x^2\right ) (a+b \arcsin (c x)) \, dx=\frac {1}{7} \, a e x^{7} + \frac {1}{5} \, a d x^{5} + \frac {1}{75} \, {\left (15 \, x^{5} \arcsin \left (c x\right ) + {\left (\frac {3 \, \sqrt {-c^{2} x^{2} + 1} x^{4}}{c^{2}} + \frac {4 \, \sqrt {-c^{2} x^{2} + 1} x^{2}}{c^{4}} + \frac {8 \, \sqrt {-c^{2} x^{2} + 1}}{c^{6}}\right )} c\right )} b d + \frac {1}{245} \, {\left (35 \, x^{7} \arcsin \left (c x\right ) + {\left (\frac {5 \, \sqrt {-c^{2} x^{2} + 1} x^{6}}{c^{2}} + \frac {6 \, \sqrt {-c^{2} x^{2} + 1} x^{4}}{c^{4}} + \frac {8 \, \sqrt {-c^{2} x^{2} + 1} x^{2}}{c^{6}} + \frac {16 \, \sqrt {-c^{2} x^{2} + 1}}{c^{8}}\right )} c\right )} b e \]

input
integrate(x^4*(e*x^2+d)*(a+b*arcsin(c*x)),x, algorithm="maxima")
 
output
1/7*a*e*x^7 + 1/5*a*d*x^5 + 1/75*(15*x^5*arcsin(c*x) + (3*sqrt(-c^2*x^2 + 
1)*x^4/c^2 + 4*sqrt(-c^2*x^2 + 1)*x^2/c^4 + 8*sqrt(-c^2*x^2 + 1)/c^6)*c)*b 
*d + 1/245*(35*x^7*arcsin(c*x) + (5*sqrt(-c^2*x^2 + 1)*x^6/c^2 + 6*sqrt(-c 
^2*x^2 + 1)*x^4/c^4 + 8*sqrt(-c^2*x^2 + 1)*x^2/c^6 + 16*sqrt(-c^2*x^2 + 1) 
/c^8)*c)*b*e
 
3.6.96.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 316 vs. \(2 (132) = 264\).

Time = 0.30 (sec) , antiderivative size = 316, normalized size of antiderivative = 2.08 \[ \int x^4 \left (d+e x^2\right ) (a+b \arcsin (c x)) \, dx=\frac {1}{7} \, a e x^{7} + \frac {1}{5} \, a d x^{5} + \frac {{\left (c^{2} x^{2} - 1\right )}^{2} b d x \arcsin \left (c x\right )}{5 \, c^{4}} + \frac {2 \, {\left (c^{2} x^{2} - 1\right )} b d x \arcsin \left (c x\right )}{5 \, c^{4}} + \frac {{\left (c^{2} x^{2} - 1\right )}^{3} b e x \arcsin \left (c x\right )}{7 \, c^{6}} + \frac {b d x \arcsin \left (c x\right )}{5 \, c^{4}} + \frac {3 \, {\left (c^{2} x^{2} - 1\right )}^{2} b e x \arcsin \left (c x\right )}{7 \, c^{6}} + \frac {{\left (c^{2} x^{2} - 1\right )}^{2} \sqrt {-c^{2} x^{2} + 1} b d}{25 \, c^{5}} + \frac {3 \, {\left (c^{2} x^{2} - 1\right )} b e x \arcsin \left (c x\right )}{7 \, c^{6}} - \frac {2 \, {\left (-c^{2} x^{2} + 1\right )}^{\frac {3}{2}} b d}{15 \, c^{5}} + \frac {{\left (c^{2} x^{2} - 1\right )}^{3} \sqrt {-c^{2} x^{2} + 1} b e}{49 \, c^{7}} + \frac {b e x \arcsin \left (c x\right )}{7 \, c^{6}} + \frac {\sqrt {-c^{2} x^{2} + 1} b d}{5 \, c^{5}} + \frac {3 \, {\left (c^{2} x^{2} - 1\right )}^{2} \sqrt {-c^{2} x^{2} + 1} b e}{35 \, c^{7}} - \frac {{\left (-c^{2} x^{2} + 1\right )}^{\frac {3}{2}} b e}{7 \, c^{7}} + \frac {\sqrt {-c^{2} x^{2} + 1} b e}{7 \, c^{7}} \]

input
integrate(x^4*(e*x^2+d)*(a+b*arcsin(c*x)),x, algorithm="giac")
 
output
1/7*a*e*x^7 + 1/5*a*d*x^5 + 1/5*(c^2*x^2 - 1)^2*b*d*x*arcsin(c*x)/c^4 + 2/ 
5*(c^2*x^2 - 1)*b*d*x*arcsin(c*x)/c^4 + 1/7*(c^2*x^2 - 1)^3*b*e*x*arcsin(c 
*x)/c^6 + 1/5*b*d*x*arcsin(c*x)/c^4 + 3/7*(c^2*x^2 - 1)^2*b*e*x*arcsin(c*x 
)/c^6 + 1/25*(c^2*x^2 - 1)^2*sqrt(-c^2*x^2 + 1)*b*d/c^5 + 3/7*(c^2*x^2 - 1 
)*b*e*x*arcsin(c*x)/c^6 - 2/15*(-c^2*x^2 + 1)^(3/2)*b*d/c^5 + 1/49*(c^2*x^ 
2 - 1)^3*sqrt(-c^2*x^2 + 1)*b*e/c^7 + 1/7*b*e*x*arcsin(c*x)/c^6 + 1/5*sqrt 
(-c^2*x^2 + 1)*b*d/c^5 + 3/35*(c^2*x^2 - 1)^2*sqrt(-c^2*x^2 + 1)*b*e/c^7 - 
 1/7*(-c^2*x^2 + 1)^(3/2)*b*e/c^7 + 1/7*sqrt(-c^2*x^2 + 1)*b*e/c^7
 
3.6.96.9 Mupad [F(-1)]

Timed out. \[ \int x^4 \left (d+e x^2\right ) (a+b \arcsin (c x)) \, dx=\int x^4\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,\left (e\,x^2+d\right ) \,d x \]

input
int(x^4*(a + b*asin(c*x))*(d + e*x^2),x)
 
output
int(x^4*(a + b*asin(c*x))*(d + e*x^2), x)